A Large-scale Dataset and Benchmark for Similar Trademark Retrieval

نویسندگان

  • Osman Tursun
  • Cemal Aker
  • Sinan Kalkan
چکیده

Trademark retrieval (TR) has become an important yet challenging problem due to an ever increasing trend in trademark applications and infringement incidents. There have been many promising attempts for the TR problem, which, however, fell impracticable since they were evaluated with limited and mostly trivial datasets. In this paper, we provide a large-scale dataset with benchmark queries with which different TR approaches can be evaluated systematically. Moreover, we provide a baseline on this benchmark using the widely-used methods applied to TR in the literature. Furthermore, we identify and correct two important issues in TR approaches that were not addressed before: reversal of contrast, and presence of irrelevant text in trademarks severely affect the TR methods. Lastly, we applied deep learning, namely, several popular Convolutional Neural Network models, to the TR problem. To the best of the authors, this is the first attempt to do so.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Challenging Big Dataset for Benchmarking Trademark Retrieval

Trademark retrieval (TR) is the problem of retrieving similar trademarks (logos) for a query, and the main aim is to detect copyright infringements in trademarks. Since there are millions of companies worldwide, automatically retrieving similar trademarks has become an important problem, and currently, checking trademark infringements is mostly performed manually by humans. However, although th...

متن کامل

Marka Erişimi İçin Derin Özniteliklerin İncelenmesi Analyzing Deep Features for Trademark Retrieval

The rapid rise in the amount of trademark applications and trademark infringements has led the trademark retrieval (TR) to become an important and formidable task to solve. Existing studies based on hand-crafted features show unsatisfying performance. Taking the popularization and increasing success of the deep learning methods into consideration, in this work, many well-known Convolutional Neu...

متن کامل

Connected Component Based Word Spotting on Persian Handwritten image documents

Word spotting is to make searchable unindexed image documents by locating word/words in a doc-ument image, given a query word. This problem is challenging, mainly due to the large numberof word classes with very small inter-class and substantial intra-class distances. In this paper, asegmentation-based word spotting method is presented for multi-writer Persian handwritten doc-...

متن کامل

SHREC ’ 14 Track : Extended Large Scale Sketch - Based 3 D Shape Retrieval

Large scale sketch-based 3D shape retrieval has received more and more attentions in the community of contentbased 3D object retrieval. The objective of this track is to evaluate the performance of different sketch-based 3D model retrieval algorithms using a large scale hand-drawn sketch query dataset on a comprehensive 3D model dataset. The benchmark contains 12,680 sketches and 8,987 3D model...

متن کامل

SHREC'10 Track: Large Scale Retrieval

This paper is a report on the 3D Shape Retrieval Constest 2010 (SHREC’10) track on large scale retrieval. This benchmark allows evaluating how wel retrieval algorithms scale up to large collections of 3D models. The task was to perform 40 queries in a dataset of 10000 shapes. We describe the methods used and discuss the results and signifiance analysis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1701.05766  شماره 

صفحات  -

تاریخ انتشار 2017